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Abstract
This paper analyzes the local stability of price equilibria in capital asset mar-

kets in terms of a class of deterministic dynamical models based on considerations
of supply-demand balance, asset store-of-value function, and asset scarcity. Sev-
eral model instances, simplified to ensure analytical tractability, are examined. In
each case, price equilibria are found to be catastrophically unstable, in that the
matrices characterizing their dynamics near equilibrium have eigenvalue spectra
heavily weighted to positive values. This is evidence that the very special con-
dition of local equilibrium stability is unlikely to be satisfied by realistic asset
markets. This instability of price equilibria in asset markets undermines the no-
tion of “asset value” that underlies the Efficient Market Hypothesis.
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1. Introduction

The notion of the “value” of a capital asset is of central importance to the
Efficient Market Hypothesis (EMH), and to the portfolio-management theory that
relies upon the EMH. Operationally, an asset’s value is taken to be the expectation
value of its price distribution, about which its price time series is presumed to
fluctuate. This expectation value is presumed to be fixed and stable, absent any
new outside information about the asset (or “shock”); such information, when
available, may cause adjustments in the asset’s value, which are then reflected in
its price time series (see Fama, 1965).

The essential intangibility of this notion of value, and of the process by which
it is adjusted in the presence of new information, has given rise to critiques of
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the EMH (Peters, 1996; Cooper, 2008), as well as efforts to test empirically the
observational predictions of the EMH. Fama (1970) gave an early, and authorita-
tive review of such efforts, finding that “...with but a few exceptions, the efficient
markets model stands up well”. Fama (1970) reported that various careful tests
of the EMH in its Weak form (all price history information already fully reflected
in asset value), Semi-Strong form (all public information fully reflected in asset
value), and Strong form (all information fully reflected in asset value) turn up at
best weak evidence for trouble with the EMH, and for the most part no evidence
at all.

Despite some empirical work (e.g. Basu, 1977; Shiller, 1981; Rosenberg et al.,
1985) appearing to dispute aspects of the EMH, these conclusions largely stand
today, at least insofar as the EMH is still considered solid enough to furnish the
basis for standard portfolio theory (Markowitz, 1952; Sharpe, 1964; Amenc and
Le Sourd, 2003). Indeed, to the extent that disputes exist, they appear to be cen-
tered more on what is to replace the clearly inadequate normal probability distri-
bution that follows from the random-walk assumption (Mandelbrot, 1963; Fama,
1965; Peters, 1996). As Fama (1970) points out, fat tails, which can be accom-
modated by introducing Stable Pareto distributions, constitute evidence against
random walks, but not against sub-Martingale models, which are perfectly consis-
tent with the EMH’s assumptions about the incorporation of “new information”
into expectation values of price distributions. Further disputes centering about evi-
dence that asset price time series exhibit “memory”, manifesting itself as Hurst In-
dex values in the “persistent” range H > 0.5 (Peters, 1996; Costa and Vasconcelos,
2003) are intriguing, but disputed on grounds of statistical significance (Couillard
and Davison, 2005).

It may appear, then, that for the most part all is well with the EMH, at least
from the point of view of its having largely withstood determined efforts at em-
pirical falsification. There is, however, another source of potential trouble for the
EMH, deriving from the notion of asset “value”. To see the source of the problem,
it is helpful to distinguish two different — and logically separate — roles that the
notion of “value” plays within the EMH:

• Asset “Value” is the expectation value of an asset’s price time series in the
absence of new and relevant market information, as outlined above;

• Asset “Value” is the asset’s Equilibrium Price in a competitive market, in
which the various requirements of buyers and sellers, manifested as demand
and supply curves, somehow come into balance, and stay there.
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The various empirical tests of the EMH test the first of these two meanings of
asset value. The second meaning — asset value as equilibrium price — is, quite
generally, simply assumed. The classic arguments for existence and accessibility
of price equilibria in markets for goods and services (see Samuelson, 1947, for
example) are assumed to carry over into asset markets, so that one may simply
import the idea of an equilibrium price, and use it as a proxy for the (complicated,
poorly-understood) price-adjustment dynamics of the market.

This assumption warrants further examination. In the study of competitive
markets for goods and services, considerable amount of work has gone into estab-
lishing not only the existence of price equilibria (Debreu, 1982; Keisler, 1996) but
also the stability of such equilibria (Samuelson, 1941, 1947; Hahn, 1982). This
last is a crucial point. Even where there are good and sufficient grounds to believe
that a price equilibrium exists, in the sense of a price at which supply meets de-
mand, that equilibrium is only useful as a proxy for the market dynamics if it is
stable. If it isn’t, then in general the solution of the dynamical system governing
price will avoid the equilibrium point, rather than converge towards it, for general
initial conditions outside a set of measure zero.

For most commodity market models, conditions for stability have been estab-
lished, and appear to be reassuringly general (Hahn, 1982). Moreover, stable price
equilibria in commodity markets are a matter of everyday observation and expe-
rience. It is perhaps unsurprising, then, that researchers working on asset pricing
models have helped themselves to the idea of the equilibrium price as the under-
lying meaning of the term “value” in the context of their work. By so doing, they
have circumvented the necessity of understanding the complex dynamics govern-
ing asset prices, and cut straight to the chase of modeling the empirical behavior
of those prices.

But there is reason to question the wisdom of this appropriation of ideas from
the theory of commodity markets. Capital assets differ substantially from goods
and services in their economic properties. In the first place, capital assets are
scarce. Their “production” is not related to “factors of production” in the standard
way that is assumed in normal commodity market models, and their supply at a
given price is not determined by considerations of marginal production costs.

Moreover, on the demand side, it is clear that buyers’ incentives are quite
different with respect to capital assets than they are with respect to commodities —
simply put, we don’t buy stock for the same reasons we buy potatoes, or haircuts.
Capital assets have a store of value function that is non-existent for goods and
services. That is to say, assets are partly valued for their ability to appreciate, or
at least to not decline in price (relative to other assets).
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Cooper (2008, p. 8) appositely writes “Whenever we invest in the hope of
achieving capital gains we are seeking scarcity value, in defiance of the core prin-
ciple that supply can move in response to demand...in asset markets it is the rate
of change of prices that stimulates shifting demand.”

This observation amounts to the introduction of new structure in the demand
function for assets which profoundly affects the nature of equilibrium between
their supply and demand. Demand for an asset is a function not only of its price
P, but also of the time derivative, Ṗ, as well as of the prices and price rates-of-
change of all the other competing assets in the market. It should be clear that
since, in the absence of production, buyers are also sellers, the supply function
for capital assets sports a complementary dependence on price and price rate-of-
change.

The upshot of all this is that the balance of supply and demand for assets
is not an algebraic condition (leading to an equilibrium price); it is rather a dy-
namical condition — a differential equation governing the evolution of prices
with time, which replaces the traditional (but wholly empirical) price modeling
schemes based on stochastic processes such as random walks or sub-martingales.
This dynamical system induced by the balance of supply and demand may be an-
alyzed to infer the stability properties of any price equilibria to which it may give
rise. That analysis is the central purpose of this work.

To be clear: this paper makes no empirical predictions of price distribution,
based on the class of dynamical models considered. The core result here is a
critique of the concept of “equilibrium price” in asset markets, and of the use
made of that concept by the EMH.

The plan of the paper is as follows: §2 discusses the purported dynamics in-
duced by supply-demand balance, how they may arise from a more general dy-
namical system, the nature of “equilibrium price”, and certain fairly general prop-
erties of the system that are useful in its stability analysis. §3 gives examples of
model market structures, of various degrees of realism (mostly toy), for which
stability analysis may be performed analytically. Finally, §4 summarizes what has
been learned from the analysis.

2. Dynamics, Equilibrium Dynamics, and Static Equilibrium

2.1. Equilibrium Dynamics
In what follows, a market for N assets will be assumed, where Pi(i = 1, . . . ,N)

is the price of the i-th asset. The Pi will be regarded as the components of an
N-dimensional vector P.
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The supply function for the i-the asset will be denoted by Si, and the demand
function by Di. These are also regarded as the i-th components of vectors S and
D, respectively. The excess supply function we write Bi ≡ Si−Di, i-th component
of a vector B = S−D.

Discussion of numeraires, money, interest rates and the like is avoided here,
since these complicate the argument needlessly without really adding any sub-
stantially new feature. It may be taken as read that assets are priced in terms of
some price unit — possibly in terms of the price Pi of a member of the collection
of assets, possibly not.

As discussed in the introduction, S, D, and B are to be regarded as functions
of price P and of price rate-of-change Ṗ, B = B(P, Ṗ), and so on. As implied by
the notation, the supply and demand for each asset is a function not only of its
own price and price rate-of-change, but on those of all the other assets as well.

Note that this dependence of S, D, and B on price behavior does not also
preclude additional dependence on other information, such as earnings, prevail-
ing interest rates, splits, etc. These dependencies may be encoded as externally
controllable parameters θ expressing such supplemental information — that is,
S = S(P, Ṗ;θ), and so on. However, when the factors thus parametrized are re-
garded as constant (i.e. no new information “shock”), they are inessential to the
analysis of price equilibrium stability, so we will drop the notational dependence
on θ in what follows.

It is clear then that the requirement that supply and demand should be in bal-
ance,

B(P, Ṗ) = S(P, Ṗ)−D(P, Ṗ) = 0, (1)

is a first-order differential equation, rather than the algebraic condition to which
we are accustomed from the case when supply and demand have no dependence
on price rate-of-change. Balance between supply and demand is no longer a con-
dition that yields price equilibrium. Instead, it yields what may be termed Equi-
librium Dynamics.

Eq. (1) governs the evolution of asset prices P, at least approximately, in the
case when market processes occurring out of supply-demand balance produce
price adjustments towards balance that are more rapid than the timescales charac-
teristic of Eq. (1). Out-of-balance dynamics will be considered further in §2.3.

2.2. Equilibrium and Stability
The condition for price equilibrium is, of course, Ṗ = 0. Substituted into

Eq. (1), we see that a price vector P0 is an equilibrium point of the dynamical
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system if it is a solution of the algebraic equation

B(P0,0) = 0. (2)

Establishing the existence of such equilibria is a topic outside the scope of this
work (see e.g. Debreu, 1982; Keisler, 1996). I will simply assume their existence
here, in order to move on to the question of their (local) stability.

Local stability is addressed using standard methods (Samuelson, 1941, 1947;
Hahn, 1982). In the first place, we linearize Eq. (1) about the equilibrium point
P0: (

∂B
∂P

)
(P−P0)+

(
∂B
∂Ṗ

)
Ṗ = 0, (3)

where (∂B/∂P) is an N×N matrix whose i, j component is (∂Bi/∂Pj)P=P0,Ṗ=0,
and similarly for (∂B/∂Ṗ). The linearized dynamical equation, prepped for sta-
bility analysis, is

Ṗ =

(
−∂B

∂Ṗ

)−1(
∂B
∂P

)
(P−P0). (4)

Local stability of Eq. (4) hinges upon the eigenvalue structure of the matrix
product on the RHS of the equation. Eq. (4) is locally stable if all the eigenvalues
have real parts that are negative, or at worst zero.

In order to analyze the required eigenvalue spectrum, it is necessary to say
more about the matrix elements of the matrices in the product. Certain properties
of these matrix elements may be inferred from the effect of basic investor incen-
tives upon the supply and demand functions, S(P, Ṗ) and D(P, Ṗ). The partial
derivatives of these functions may be assumed to obey the following inequalities:

∂Sk

∂Pk
> 0 ;

∂Dk

∂Pk
< 0 ; (5)

∂Sk

∂Ṗk
< 0 ;

∂Dk

∂Ṗk
> 0 ; (6)

∂Sk

∂Pl
< 0 ;

∂Dk

∂Pl
> 0 , (k 6= l); (7)

∂Sk

∂Ṗl
> 0 ;

∂Dk

∂Ṗl
< 0 , (k 6= l). (8)

Eqs. (5) are the classic normal dependence of supply and demand for goods
and services on price, while Eqs. (6) express the fact that a depreciating asset
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is a better candidate for its owner to unload than an appreciating one, while an
appreciating asset is more attractive to potential buyers than a depreciating one.

Eqs. (7) express the assumption that assets are gross substitutes. They purport
that the supply of the k-th asset is lower at a higher price of the l-th asset, since the
higher l-price decreases the temptation to liquidate a k-position in order to acquire
an l-position; and that the demand for asset k is higher at a higher price of asset l,
as asset k then appears to be a better bargain by comparison with asset l.

Eqs.(8) express the extension of gross substitutability to price rate-of-change
dependencies. They state that the supply of the k-th asset is higher at a higher
appreciation rates of the l-th asset, since the higher l-appreciation rate makes the
l-th asset more attractive, increasing the temptation to liquidate k-positions; and
that the demand for asset k is lower at a higher appreciation rate of the l-th asset,
since the l-th asset is then relatively more attractive than the k-th asset.

In terms of the excess supply function B, these inequalities imply

∂Bk

∂Pk
> 0 ;

∂Bk

∂Ṗk
< 0, (9)

∂Bk

∂Pl
< 0 ;

∂Bk

∂Ṗl
> 0, k 6= l. (10)

which means that −(∂B/∂P) and (∂B/∂Ṗ) are so-called Metzler matrices.
As we will see in §3, inequalities (9) and (10) are fundamental to addressing

the question of local stability of Eq. (4), in the context of models of the local
functional dependence of B on P and Ṗ.

2.3. Out-Of-Balance Dynamics
It is possible to feel some discomfort with the idea of using Eq. (1) as the dy-

namical system governing the evolution of asset prices. After all, Eq. (1) presumes
that supply and demand are always in balance. Perturbations such as Eq. (3) only
perturb the equilibrium price along directions consistent with such balance. In
general, we should expect this in-balance dynamical system to be embedded in a
more general dynamical system, one that allows for the possibility of unrequited
buy or sell orders, at least on short timescales. Such a generalized dynamical sys-
tem may be of some relevance to the perturbation analysis, even if the equilibrium
configuration about which the perturbation is performed is in fact on the surface
B = 0, because the extra direction out of the surface could, in principle, have a sta-
bilizing — or destabilizing — effect on the eigenvalue spectrum of the linearized
dynamical system.
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In order to consider this possibility, it is necessary to assume a reasonable
dynamical system that reduces under balance conditions, to Eq. (1). The standard
procedure (Hahn, 1982) is to assume a first-order dynamical equation,

Ṗ = H(B), (11)

where the action lives in the choice of the driving term H(B), which generally
features the property that H(0) = 0. Tatonnement models frequently set H =−λB
(λ > 0), so that if an asset has non-zero excess supply, its price moves in such a
way as to abate the excess.

If this strategy were adopted, the apparently novel feature would be the ap-
pearance of a dependence on price rate-of-change Ṗ in B. Actually, this would
not be such a novelty: for example, the Tatonnement models of Enthoven and
Arrow (1956) and of Arrow and Nerlove (1958) already feature dependence on
price rate-of-change in the driving term, in order to provide a movement towards
expected (extrapolated) future value.

However, in the present context, a dynamical equation such as Eq. (11) is
too restrictive. It enforces B = 0 ⇒ Ṗ = 0 — that is supply-demand balance
necessarily entails equilibrium. That’s too strong an assumption here, since we
expect that there is scope for dynamic price behavior even in balance. So instead
of Eq. (11), let us model out-of-balance dynamics by

d
dt

B(P, Ṗ) = H(P, Ṗ), (12)

which we will assume reduces to

d
dt

B(P, Ṗ) =−λB(P, Ṗ), (13)

approximately, near equilibrium.
Eqs. (12) and (13) are second-order differential equations in time for P. Equi-

librium, in this generalized context, means P = P0, Ṗ = 0, P̈ = 0, so that balance
(B = 0) is a necessary condition for equilibrium, although no longer a sufficient
condition.

The constant λ regulates the rate at which supply-demand balance is restored
in Eq. (13). We see intuitively that a stability analysis based on the in-balance
dynamics of Eq. (1) is justified so long as the characteristic timescales that arise
from the spectrum of Eq. (4) are long compared to 1/λ.
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When this condition is not fulfilled, it is necessary to perturb Eq. (13), instead
of Eq. (1). This is easily done:(

∂B
∂P

)
Ṗ+

(
∂B
∂Ṗ

)
P̈ =−λ

[(
∂B
∂P

)
(P−P0)+

(
∂B
∂Ṗ

)
Ṗ
]
. (14)

We may cast this as a first-order ODE in a larger vector space:

d
dt

(
P−P0

Ṗ

)
=

(
0 1

λG G−λ1

)(
P−P0

Ṗ

)
, (15)

where we have defined

G≡
(
−∂B

∂Ṗ

)−1(
∂B
∂P

)
, (16)

which is the matrix that appears on the RHS of Eq. (4).
We may express an eigenvector of the matrix on the RHS of Eq.(15) in parti-

tioned form, that is (
0 1

λG G−λ1

)(
v1
v2

)
= µ

(
v1
v2

)
. (17)

after some minor algebra, we find that v2 = µv1, and

(µ+λ)Gv1 = µ(µ+λ)v1. (18)

That is to say, if v1 is an eigenvector of G — that is, of the RHS of the equilibrium-
dynamical problem of Eq. (4) — then the vector vT = (vT

1 ,µvT
1 ) is an eigenvector

of the RHS of Eq. (15). If Gv1 = ωv1, then either µ =−λ or µ = ω.
What we learn from all this is that even in the case when the “restoring force”

that enforces supply-demand balance acts slowly compared to the dynamical times
associated with Eq. (4) (that is, roughly speaking, when λ < ω) we may proceed
by analyzing the stability problem associated with Eq. (4), since it is straight-
forwardly associated with the more general stability problem. In particular, the
general dynamical system is evidently stable if, and only if, the equilibrium-
dynamical system is stable.

Consequently, in the examples discussed in §3 below, the discussion is re-
stricted to the stability issues attending Eq. (4).

3. Some Illustrative Examples

In order exhibit analytical results on the local stability properties of Eq. (4), it
is instructive to build some simple, tractable models incorporating the constraints
of Eqs. (9) and (10). This section presents a selection of such models, together
with their attendant stability analyses.
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Figure 1: Phase flow and supply-demand balance for one-asset dynamics.

3.1. One-Asset Market
The simplest possible case, and the one most obviously to be examined first,

is that of a market in which a single asset is traded. Restricted to N = 1, Eq. (4)
now reads

Ṗ =−∂B/∂P
∂B/∂Ṗ

× (P−P0), (19)

where the derivatives are evaluated at P = P0, Ṗ = 0. The elementary solution is

P(t)−P0 = Aexp(ωt), (20)

where A is a constant which may be either positive or negative, depending on
initial conditions, and ω≡−(∂B/∂P)/(∂B/∂Ṗ)> 0, in virtue of Eqs. (9).

It is clear from Eq. (20) that equilibrium points of single-asset markets are
unstable. The price P is repelled from the equilibrium at a locally-exponential
rate ω. For general initial conditions, the equilibrium is not attainable, and if
we should happen to artificially start the system with P(t = 0) = P0, any slight
perturbation (such as the “shock” of new information flowing to investors) will
cause the market to leave equilibrium at a locally exponential rate.
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Of course, P doesn’t really go negative, or to infinity, as the local behavior
expressed by Eq. (20) appears to imply. The price cannot go to zero in supply-
demand balance, because the supply function S is zero there, and D cannot follow
it. Similarly, the price cannot go to infinity in supply-demand balance, because
investor budget constraints set some maximum price Pmax, above which demand
D goes to zero, at which point it necessarily is parted from S.

Thus what must happen, once the price movement of Eq. (20) has progressed
sufficiently, is that the supply-demand balance breaks down in order to protect the
barriers at P = 0 and at P = Pmax. These barriers are necessarily encoded in the
function H(P, Ṗ) in Eq. (12). It is of some interest to consider how the dynamics
of Eq. (12) cause a tearing of the balance in the one-asset case (despite the fact
that this constitutes a bit of a departure from the equilibrium-stability core results
of this work) because the one-asset case offers the possibility of visualizing the
dynamical situation in a way that is more difficult in higher-dimensional cases.

We need to consider the situation in the full dynamical context of Eq. (12).
This is depicted schematically in Fig. 1. The figure shows the phase space, with P
along the horizontal axis and Ṗ along the vertical axis. The P = 0 barrier (where
S = 0) is the black line at the left of the figure, while the P = Pmax barrier (where
D = 0) is the red line at the right. The green hatched regions are forbidden to the
flow.

The blue line is B= S−D= 0, the line of supply-demand balance. It meets the
horizontal axis at the equilibrium point P= P0, Ṗ= 0. It necessarily asymptotes to
Ṗ→−∞ at P = 0 (since D cannot be zero for P = 0 and finite Ṗ) and to Ṗ→+∞

at P = Pmax (since S cannot be zero for P = Pmax and finite Ṗ).
The magenta arrows depict the flow vector field embodied by H(P, Ṗ) in Eq. (12).

The vectors must point to the right above the horizontal axis, where Ṗ > 0, and
to the left below the axis, where Ṗ < 0. On the Ṗ = 0 axis, the vectors must be
vertical. At the equilibrium point, the vector field must be zero.

At the extreme right of the Ṗ > 0 half-plane, the flow must be strongly down-
ward, representing the strong price deceleration required to keep P from crashing
through the P = Pmax budget barrier. The closer P is to Pmax, the larger the decel-
eration vector. Similarly, at the extreme left of the Ṗ < 0 half-plane, the flow must
be strongly upwards, to prevent the price from crashing through the zero bound.

In the quiet little pond near the equilibrium point, the flow is as implied by
Eqs. (13) and (19): a restoring force leading back to the line of supply-demand
balance, and a flow along the line leading away from the equilibrium point. How-
ever, as the solution moves away from equilibrium along the balance line, it begins
to sense the effect of the vector field component whose job it is to protect the bud-
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get and zero-bound barriers. Eventually the barrier protection effect, which is
small near equilibrium, starts to dominate the flow, and causes the tearing away of
supply from demand. The trajectory in phase space then cycles around, executing
orbits about the equilibrium point that are, in general, not closed curves in phase
space.

We see, then, that the necessity of imposing budget and zero-bound constraints
as global properties of the one-asset dynamical system can produce non-trivial
dynamical behavior in the phase flow, capable of breaking down the balance of
supply and demand in order to protect the constraints, and resulting in complex —
and coherent — price motion without any change in the position of the equilibrium
price.

These considerations certainly apply with equal force to multiple-asset mod-
els, such as the ones considered in the following sub-sections. In fact, one would
expect the structure of the phase flows to be richer, as the flows can twist around in
higher-dimensional spaces. However, it is also more complicated to characterize
the global properties of these flows than it is for the single asset case. We therefore
do not attempt this sort of analysis in the sub-sections that follow.

3.2. Uniform Prices of Asset Appreciation Rates
Another model in which Eq. (4) is easily diagonalized may be constructed by

setting (
∂B
∂Ṗ

)
=−

(
∂B
∂P

)
D, (21)

where D is a diagonal matrix, D = diag(d1, . . . ,dN), with di > 0, i = 1, . . . ,N.
Note that the positivity of the di is required to ensure that the model respects the
inequalities of Eqs. (9) and (10).

In this model, we have that

∂Bi/∂Ṗk =−dk∂Bi/∂Pk. (22)

This may be interpreted as saying that near equilibrium, it is a matter of aggregate
indifference to investors whether asset k increases in price by an amount ∆Pk or
loses an amount ∆Ṗk ≡ ∆Pk/dk from its appreciation rate Ṗk. In other words,
dk may be viewed in this model as the market price ascribed to changes in the
appreciation rate of asset k. In this model appreciation rates have “uniform” prices
in the sense that in Eq. (22), the value of the appreciation rate of asset k is the same
measured relative to the excess supply of all assets i = 1, . . . ,N.
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Plugging Eq. (21) into Eq. (4) we immediately obtain

Ṗ = D−1(P−P0). (23)

Since the di are necessarily positive, it follows that in this model we find catas-
trophic instability — there is not a single stable direction in the problem.

3.3. Fungible Asset Markets
Here we consider a model in which

∂Bi

∂Pk
= (c1 + c2)δik− c2; (24)

∂Bi

∂Ṗk
= −(c3 + c4)δik + c4, (25)

with c1 > 0,c2 > 0,c3 > 0,c4 > 0, so that the inequalities of Eqs. (9) and (10) are
satisfied. Such a market is “fungible,” in the sense that there is nothing to choose
between different assets — asset labels may be interchanged with no effect on the
dynamics.

It is straightforward to show that the matrices of Eqs.(24) and (25) commute
with each other, so that they they have common eigenvectors and may be diago-
nalized simultaneously. Furthermore, it is easily verified that any vector x whose
components sum to zero (so that uT x = 0, where u is a vector whose components
satisfy ui = 1, i = 1, . . . ,N) is an eigenvector of both matrices:(

∂B
∂P

)
x = (c1 + c2)x; (26)(

∂B
∂Ṗ

)
x = −(c3 + c4)x. (27)

The subspace of such vectors is (N−1)-dimensional. It follows that the matrix
product on the RHS of Eq. (4) has at least an (N − 1)-dimensional degenerate
irreducible subspace characterized by a positive-definite eigenvalue ω = (c1 +
c2)/(c3 +c4). The remaining eigenvalue — corresponding to the eigenvector x =
u — may be positive or negative, depending on the relative sizes of the ci. This
model therefore also features highly unstable price equilibria.
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3.4. Fungible Cross-Responses
Here we consider a model where the excess supply B responds to price changes

as follows: (
∂B
∂P

)
= D1−a1uT ; (28)(

∂B
∂Ṗ

)
= −D2 +a2uT , (29)

where as in §3.3, u is the vector whose components are all equal to 1. The vectors
a1 and a2 are assumed to have strictly positive components asi, i = 1, . . . ,N,s =
1,2; and Ds ≡ diag(µs1 +as1,µs2 +as2, . . . ,µsN +asN), s = 1,2. To satisfy the in-
equalities of Eqs. (9) and (10), we must require that all the µsi > 0, i= 1, . . . ,N,s=
1,2. As a further simplification, we assume that D2 = αD1, with α > 0 so as to
still satisfy the constraints.

The “story” that accompanies this model is that the aggregate excess supply
corresponding to each asset has its own personalized response to changes in its
own price or to its own price rate-of-change (the µ parameters). However, the
response of each asset’s excess supply to changes in prices and price rates-of-
change of other assets is uniform, so that relative to each asset the values of all the
other assets are fungible. The parameter α is similar to the market price of asset
appreciation, the di parameters in §3.2. However, here its definition is less easily
interpreted as a market price of appreciation, since it is a constant of proportion-
ality between parameter combinations µ1k +a1k and µ2k +a2k.

The required inverse of the matrix in Eq. (29) may be obtained by the Sherman-
Morrison-Woodbury formula (Golub and Van Loan, 1989, p. 51):(

−∂B
∂Ṗ

)−1

= D2
−1 +

1
1− c

D2
−1a2uT D2

−1, (30)

where c≡ uT D2
−1a2 = ∑

N
i=1 a2i/(µ2i +a2i).

Plugging Eqs. (30) and (28) into Eq. (4), we obtain

Ṗ =

{
α
−11−D2

−1
[

a1 +
f −α−1

1− c
a2

]
uT

}
(P−P0), (31)

where f ≡ uT D2
−1a1 = ∑

N
i=1 a1i/(µ2i +a2i).

By inspection, we see immediately that just as with the model of §3.3, any
vector x with components that sum to zero (so that uT x = 0) is an eigenvector of
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the matrix in braces on the RHS of Eq. (31) with positive eigenvalue α−1. That is
to say, there is again an (N−1)-dimensional irreducible degenerate subspace with
positive eigenvalue α−1. The remaining eigenvector D2

−1[a1+a2( f −α−1)/(1−
c)] has an eigenvalue which may be positive or negative, depending on the param-
eters. It is therefore clear that the equilibrium point P0 is again highly unstable.

4. Conclusions

To review briefly: the traditional, wholly empirical, stochastic-process-based
models of capital asset pricing have been replaced here with a class of determinis-
tic dynamical models, whose general structure is inferred by taking seriously (1)
the store-of-value function of assets, (2) the scarcity of assets, and (3) the balance
of supply and demand for assets. This has been done with a view to analyzing the
stability of the equilibrium points of asset price dynamics. Equilibrium stability is
a necessary validity condition for the adoption of equilibrium price as the notion
of “asset value,” because in the absence of stability, solutions of the dynamical
equations governing asset prices are repelled from equilibrium points, rather than
attracted towards them. But equilibrium price may only be pressed into service
as a proxy for the full dynamical system if the system’s solutions spend most of
their time at or near the equilibria. Thus the point of the exercise is to determine
whether the notion of “asset value” as an equilibrium price is rigorously justifi-
able, or even plausible.

The equilibrium of a set of analytically tractable toy models has been studied.
In each case, the models not only do not give rise to stable equilibria: their equi-
librium points are typically catastrophically unstable, with either every or almost
every local mode corresponding to a positive eigenvalue.

This in no way constitutes “proof” that all asset markets lack equilibrium sta-
bility, of course. On present evidence it cannot be excluded that a model could
be proposed that is consistent with the constraints on excess supply expressed by
Eqs. (9) and (10) and yet contrives to keep all its eigenvalues negative, so as to en-
sure local stability. It should be noted, however, that to the extent that the models
examined above are oversimplified and contrived, they are contrived to achieve
analytical tractability, and not to prejudge the issue of local stability. It just turns
out that all the simple models that spring to mind are not just locally unstable, but
strongly unstable — their spectra appear strongly biased towards positive eigen-
values. From the perspective of this experience, it would seem that a high degree
of unrealistic contrivance would be required to produce a stable model of asset
price dynamics.
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On reflection, this is not a terribly surprising conclusion. Local stability is a
very special condition, which requires considerable effort to arrange and to verify
even in classical markets without excess-supply dependencies on price rate-of-
change (Hahn, 1982). Despite the obvious attractiveness of the notion that one can
simply use an equilibrium price as a proxy for complicated and poorly-understood
dynamical laws, it was always risky to assume that one could summarily take
equilibrium stability as read in asset markets, without attempting to verify the
plausibility of this assumption.

If we accept these conclusions, we must face up to the fact that “asset value”
is a metaphysically empty concept. There is no value, only price. The opera-
tional definition of value — the expectation value of a price time series in the
absence of new and relevant information — is still available, but it is not possible
to attach it to the conception of equilibrium price in a competitive market model.
Whatever empirical regularities those expectation values may exhibit, they must
be explained in terms of the market zooming around price space under the power
of its own dynamics, as much as reacting to the shocks of new information. As we
saw in §3.1 in the case of a single-asset market, the dynamical system is perfectly
capable of executing complex, non-stochastic motions in price space without re-
quiring any external jiggling of the equilibrium price P0.

In this light, the EMH’s view of value as a hidden variable, incorporating all
or most market information, changing only in response to changes in such infor-
mation, and imposing observational consequences on price time series, acquires
a somewhat theological tinge. One may as well speak of an asset’s soul as of its
“value”.

None of this is to deny the worth of empirical studies of the statistical proper-
ties of asset markets, such as those conducted under the aegis of the EMH (or in
attempts to refute it) (e.g Fama, 1970; Mandelbrot, 1963; Shiller, 1981; Costa and
Vasconcelos, 2003, and many others). But it is important that one should have a
clear idea of what is — and isn’t — being measured and modeled. The function
of ideas such as “value-as-equilibrium-price” is at least in part paradigmatic, in
that it helps guide what sort of experiments, observations, and analyses we do,
and which we don’t bother with. If an idea as fundamental to our thinking as
the meaning “asset value” is incorrect, this probably means that many research
programs in this area are ripe for re-thinking.
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